Covering Lemmas and an Application to Nodal Geometry on Riemannian Manifolds

نویسندگان

  • Guozhen Lu
  • GUOZHEN LU
چکیده

The main part of this note is to show a general covering lemma in Rn, n 2 2 , with the aim to obtain the estimate for BMO norm and the volume of a nodal set of eigenfunctions on Riemannian manifolds. This article is a continuation of our previous work [L]. In [L] we proved a covering lemma in R2 and applied it to the BMO norm estimates for eigenfunctions on Riemannian surfaces. The principal part of this article is to prove a general covering lemma in Rn for n 2 2 . As applications, we can obtain the BMO estimate for eigenfunctions and the volume estimate for the nodal set. Let M n be a smooth, compact, and connected Riemannian manifold with no boundary. Let A denote the Laplacian on M n . Let -Au = ilu, u an eigenfunction with eigenvalue il , il > 1 . Our main results can be stated as follows Theorem A (BMO estimate for log lul) . For u , il as above and n 2 3 , where C is independent of il and u and is only dependent on n and M n Theorem B (geometry of nodal domains). Let n 2 3 and u , il as above. Let B c M n be any ball, and let R c B be any of the connected components of {x E B :u(x) # 0) . If R intersects the middle halfof B , then where C is independent of il and u Donnelly and Fefferman [DFl, DF2] and Chanillo and Muckenhoupt [CM] proved Theorem A with (10gil)~ replaced by iln(n+2)/4 and iln log2 , respectively, and Theorem B with A-2n2-n14 replaced by il-(n+n2(n+2))/2 and il-2n2-n/2 (log il)-2n , respectively. Received by the editors June 28, 1991. 1991 Mathematics Subject Class$cation. Primary 35B05, 58G03. @ 1993 American Mathematical Society 0002-9939193 $1.00 + $.25 per page

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Operator-valued tensors on manifolds

‎In this paper we try to extend geometric concepts in the context of operator valued tensors‎. ‎To this end‎, ‎we aim to replace the field of scalars $ mathbb{R} $ by self-adjoint elements of a commutative $ C^star $-algebra‎, ‎and reach an appropriate generalization of geometrical concepts on manifolds‎. ‎First‎, ‎we put forward the concept of operator-valued tensors and extend semi-Riemannian...

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

On the k-nullity foliations in Finsler geometry

Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...

متن کامل

Local and Global Analysis of Eigenfunctions on Riemannian Manifolds

This is a survey on eigenfunctions of the Laplacian on Riemannian manifolds (mainly compact and without boundary). We discuss both local results obtained by analyzing eigenfunctions on small balls, and global results obtained by wave equation methods. Among the main topics are nodal sets, quantum limits, and L norms of global eigenfunctions. The emphasis is on the connection between the behavio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007